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Abstract: This study aims to model training adaptation using Artificial Neural Network (ANN)
geometric optimisation. Over 26 weeks, 38 swimmers recorded their training and recovery data on a
web platform. Based on these data, ANN geometric optimisation was used to model and graphically
separate adaptation from maladaptation (to training). Geometric Activity Performance Index (GAPI),
defined as the ratio of the adaptation to the maladaptation area, was introduced. The techniques of
jittering and ensemble modelling were used to reduce overfitting of the model. Correlation (Spearman
rank) and independence (Blomqvist β) tests were run between GAPI and performance measures to
check the relevance of the collected parameters. Thirteen out of 38 swimmers met the prerequisites
for the analysis and were included in the modelling. The GAPI based on external load (distance)
and internal load (session-Rating of Perceived Exertion) showed the strongest correlation with
performance measures. ANN geometric optimisation seems to be a promising technique to model
training adaptation and GAPI could be an interesting numerical surrogate to track during a season.

Keywords: training monitoring; online tool; machine learning

1. Introduction

Training monitoring is widely understood to be a crucial part of modern athletes’ follow-up as it
helps to assess individual response to training [1]. Consequently, training monitoring could also reduce
the risk of overtraining syndrome, injury, illness, and eventually benefit athletic performance [1,2].

Several methods have been developed to quantify training load and assess fatigue and
recovery [1–3]. The choice of adequate methods should depend on the sport-specific context, the goal
of the monitoring program, as well as on available means and resources [1,4]. Once collected, data need
to be analysed to provide coaches and athletes with actionable information [1,4,5]. To achieve this,
several mathematical techniques to model training effects on performance have been proposed [6].
Traditional models, like impulse-response and multiple regression models, “are based on linear
mathematical concepts such as regression analysis and linear differential equations” [6] (p. 839).
However, because biological adaptations are complex non-linear processes, non-linear mathematical
concepts like Artificial Neural Network (ANN) are believed to provide a more accurate description of
performance responses to training [1,6–10]. Indeed, ANN models can capture dynamic changes in
the training–performance relationship and adjust accordingly [11]. Furthermore, ANN is particularly
appropriate to predict outcomes [12–14]. One study accurately predicted the performance of a single
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elite swimmer at the 2000 Olympic Games using ANN to model her training adaptation [8]. A second
study demonstrated that using ANN to model training adaptation improved performance prediction
in a triathlon, compared to a traditional linear model [15]. Finally, a third study reported improved
performance prediction in cycling using a hybrid ANN ensemble model [11].

To date, however, to the best of the authors’ knowledge, no study has used ANN geometric
optimisation to model training adaptation. Compared to ANN, ANN geometric optimisation can
separate domains of influence of identified patterns in a Euclidean space [16,17]. In other words,
it identifies patterns within a data set, determines the distribution of these patterns in a given space
and finally detects the graphical boundaries of these patterns.

This study has two aims. The first is the monitoring of training, recovery and performance among
competitive swimmers during 26 weeks. The second is the modelling of training adaptation using
ANN geometric optimisation. It is hypothesised that ANN geometric optimisation could graphically
separate adaptation from maladaptation (to training) and therefore facilitate outcome visualisation
and comprehension for coaches and athletes.

Swimmers were selected as the target sample as they typically complete high training loads and
are at higher risk of non-functional overreaching (NFOR) or overtraining (OT), compared to other
athletes [18]. Studies report a NFOR/OT prevalence of about 10% in swimmers with career rates up to
30% [19,20]. NFOR/OT usually results from an imbalance between training load and everyday stressors
on one hand, and adaptation and recovery capacity on the other hand [19]. Therefore, swimmers could
benefit from an efficient training monitoring system [1].

2. Materials and Methods

2.1. Experimental Approach

The present explorative study used a prospective observational multicentre design to record
training, recovery and performance parameters.

2.2. Recruitment

Coaches of all Swiss swim clubs recognised as “Talents Promotion Centres” were contacted by
e-mail in the summer of 2013. Six of the 25 coaches were interested in participating. The study was
presented to the swimmers of these six clubs, and they received an informative study protocol. A total
of 39 athletes (20 males and 19 females, mean age 17.5 ± 2.8 years) agreed to participate and gave their
informed written consent. Swimmers’ levels ranged from regional to international. The study was
conducted in accordance with the Declaration of Helsinki and the protocol was approved on the 3rd
of September 2014 by the Human Research Ethics Committee of the “Canton de Vaud” (Lausanne,
Switzerland; study protocol no 321/13).

Since participants came from both the German- and the French-speaking parts of Switzerland,
the study was conducted in both languages. The study observation period comprised 26 weeks during
the first two macrocycles of the 2013–2014 season, from the 30th of September 2013 to the 30th of
March 2014. When the study observation period started, swimming clubs had already been training
for 4 weeks.

2.3. Exclusion and Inclusion Criteria

All athletes wishing to participate in the study had to be a member of one of the participating
swimming clubs. All clubs were recognised as “Talent Promotion Centres”, which certifies that all
participants had at least a regional level, trained a minimum of 10 h per week and were at least 13
years old. Swimmers were excluded if an overtraining syndrome had been diagnosed during the
previous season and/or they had an injury preventing participation in training at the start of the
study. One swimmer had to be excluded for this reason. To avoid duplicates, the entire flow chart is
illustrated in Figure 2 under Results.
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2.4. Data Collection

Methods to quantify training load and assess fatigue and recovery were chosen according
to recommendations made by Bourdon, et al. [1] and Soligard, et al. [2]. Recorded data and the
pre-determined frequency at which they were recorded are summarised in Table 1 and described
below. Throughout the study, swimmers entered data in a web platform (AthleteMonitoring,
FITSTATS Technologies, Inc., Mancton, NB, Canada). Participants were instructed on how to
use the platform during the study presentation. The platform automatically sent e-mail reminders if
no data were entered on the previous day, as well as on days of questionnaire completion. The main
investigator tracked all entered data daily and sent up to two additional reminders if necessary (on the
day after, and again on the following day). Data were stored solely in anonymous form. Swimmers
and coaches had neither feedback on, nor access to, the data entered during the study.

Table 1. Recorded data. Abbreviation: The POMS-A = The Profile of Mood State—Adolescents.

Frequency Data Type Reminders

Daily
After every training session

Training log:
Rating of perceived exertion (RPE)

using the modified Borg CR-10
RPE scale
Sport type

Distance (meters, if swimming)
Duration (minutes)

If no training was entered on the
previous day, the web platform
automatically sent a reminder

email on the following day.

Twice a week
Every Tuesday and Friday The Well-being questionnaire

An email was sent on the day of
completion and if needed up to
two additional reminders were

sent (on the day after and on the
day after next).

Fortnightly
Every second Sunday The POMS-A

An email was sent on the day of
completion and if needed up to
two additional reminders were

sent (on the day after and on the
day after next).

2.4.1. “Well-Being Questionnaire”

This questionnaire was developed by McLean et al. and slightly adapted to our needs [21].
Swimmers answered questions on five components of recovery: sleep quality and quantity, level of
muscle soreness, training enjoyment and general stress (i.e. including stress outside training).
Additionally, they assessed their global recovery level. A 7-point Likert scale was used, where one
to three represent an insufficient, four an acceptable and five to seven a good level of recovery.
All questions refer to the lapse of time since the last questionnaire was completed, except for
sleep-related questions, which refer to the previous night.

2.4.2. “Profile of Mood State—Adolescents (POMS-A)”

This POMS version consists of 24 items representing six mood dimensions: anger, confusion,
depression, fatigue, tension and vigour. This version was chosen because most participants were
teenagers [22,23]. Validated French and German translations were used for the adjectives, which are
used in both the POMS-A and in the original POMS version [24,25]. The remaining adjectives were
translated and examined by bilingual native speakers.
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2.4.3. Training Log

Coaches provided training attendance lists used to calculate the percentage of recorded
training sessions. Based on the rating of perceived exertion (RPE), session-RPE, training monotony,
training strain and Acute: Chronic Workload Ratio were calculated [26–28].

2.4.4. Performance Outcome

Competition results were considered as a performance outcome and were collected from
swimrankings (an online database for European swimmers). In order to judge whether a swimmer
improves or not during the study, only her/his best discipline, defined as the one in which she/he has
the most FINA points (in the year 2013) at the beginning of the study, was taken into account [29].
The achieved time was converted into “percentage of personal best time” (%PBT) as shown herein
below (according to the formula used by swimrankings). Using the best time at the beginning of the
study for the term “previous personal best time” allows for comparison of all competition results
against the same performance index for each swimmer.

Percentage of Personal Best Time =
(

previous personal best time[seconds]
current achieved time[seconds]

)2
∗ 100

2.5. Modelling Training Adaptation Using ANN Geometric Optimisation

2.5.1. Concept

ANN geometric optimisation was used to model and graphically separate adaptation from
maladaptation (to training). Weekly %PBT values were dichotomised by comparing each %PBT
value against 100%. In this way, %PBT values exceeding 100% could stand out from %PBT values
under 100% allowing easy separation of weeks with improvement (adaptation), vs. no improvement
(maladaptation).

2.5.2. Mathematical Considerations Regarding the Development of the Model

Three different time series, X(ti), Y(ti), and Z(ti), i = 1,..., n, n ∈ N were projected on a
three-dimensional Euclidean space using their Hausdorff-Besicovitch dimensions [30]. The time series
Z(ti) was turned into a binary perceptron by comparing each value of the time series against 100%.

Based on the triplets (X(ti), Y(ti), sign(100 − Z(ti))), i=1,..., n, ANN was used to classify patterns that
are characterised by respective perceptron’s values being either plus one or negative one. Mean Cross
Entropy was used as a classifier [31]. The activation function is given by the perceptron. To locate the
position and identify the domain of influence of these patterns, Calinski-Harabasz cluster criterion
and three geometric techniques were used: Bray-Curtis dissimilarity, Chebyschev distance and
normalized squared Euclidean distance [32–36]. The result with the least number of patterns was
selected. Convexification of the respective patterns were computed as a coarse-grained partitioning of
the domain of influence. These steps fundamentally simplify the subsequent construction of higher
resolution Delaunay triangulations [37,38]. Lastly, the respective patterns’ domains of influence were
disconnected by small layers to improve the integration error.

The obtained output is a curve separating the domains of influence of identified patterns (Figure 1).
In other words, constructed graphs display two areas: an adaptation and a maladaptation area.
The software used to compute the model, “Cassiopee computational eco-system”, was developed by
Kloucek [39].
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Figure 1. Artificial Neural Network geometric optimisation approach to monitoring. Ω + = positive 
predictive performance area; Ω – = negative predictive performance area; Quantity b(Z) = binary 
parameter. 

2.5.3. Inputs to the Model 

Five different combinations of three time series were used to feed the model (Table 2). In each 
combination, %PBT was used as the time series Z(ti) and converted into the binary perceptron. This 
allows the contrast of the time series X(ti) and Y(ti), with the performance outcome.  

Table 2. The five combinations analysed. Abbreviations: %PBT = percentage of Personal Best Time. 

Time series ► 
x y z 

Combinations ▼ 
1 Distance Session-RPE %PBT (binary) 
2 Session-RPE Recovery %PBT (binary) 
3 Training strain Recovery %PBT (binary) 
4 Training monotony Recovery %PBT (binary) 
5 Distance Acute: Chronic Workload Ratio  %PBT (binary) 

► refers to this first row, while ▼refers to the first column. 

To choose the time series X(ti) and Y(ti), the authors classified collected data into coping and 
load, further classified as external and internal load (Table 3). In agreement with the 
recommendations of Bourdon, et al. [1], the combinations one and five include measures of external 
and internal load. Combinations two, three and four include measures of internal load and recovery 
as recommended by Kentta and Hassmen [40]. Due to financial constraints, this explorative research 
was limited to five out of the 44 possible combinations. 

Weekly averages were used as time series X(ti) and Y(ti), while the best weekly %PBT was used 
as Z(ti). Data was normalised dividing each value of the time series by its maximal value.  
  

Figure 1. Artificial Neural Network geometric optimisation approach to monitoring. Ω+ =

positive predictive performance area; Ω− = negative predictive performance area; Quantity b(Z)
= binary parameter.

2.5.3. Inputs to the Model

Five different combinations of three time series were used to feed the model (Table 2). In each
combination, %PBT was used as the time series Z(ti) and converted into the binary perceptron.
This allows the contrast of the time series X(ti) and Y(ti), with the performance outcome.

Table 2. The five combinations analysed. Abbreviations: %PBT = percentage of Personal Best Time.

Time Series
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x y z
Combinations H

1 Distance Session-RPE %PBT (binary)

2 Session-RPE Recovery %PBT (binary)

3 Training strain Recovery %PBT (binary)

4 Training monotony Recovery %PBT (binary)

5 Distance Acute: Chronic Workload Ratio %PBT (binary)
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refers to this first row, while Hrefers to the first column.

To choose the time series X(ti) and Y(ti), the authors classified collected data into coping and load,
further classified as external and internal load (Table 3). In agreement with the recommendations
of Bourdon, et al. [1], the combinations one and five include measures of external and internal load.
Combinations two, three and four include measures of internal load and recovery as recommended by
Kentta and Hassmen [40]. Due to financial constraints, this explorative research was limited to five out
of the 44 possible combinations.

Weekly averages were used as time series X(ti) and Y(ti), while the best weekly %PBT was used as
Z(ti). Data was normalised dividing each value of the time series by its maximal value.

2.5.4. Overfitting

Given its flexibility, ANN is prone to overfitting [11,15]. To reduce overfitting in models using
small data sets, several approaches have been proposed [11]. Jittering “consists of adding artificial
noise to data, thus supplementing the training sample with additional artificially created data which



Sports 2020, 8, 8 6 of 15

is similar to, but different from, the original data” [11] (p. 78). Ensemble modelling associates the
output of several single models to improve the predictive performance of a single model and reduce
overfitting [11,41]. There is no consensus for selecting the appropriate size of an ensemble, but an
ensemble size of 5 to 10 is usually considered as sufficient [11,41–43]. In this study, 10% Gaussian white
noise perturbation was superimposed to the original data sets creating new data sets [44]. For each
swimmer and combination, 50 different data sets were created. Using these new data sets, the model
was then run 50 times, for each swimmer and combination. The ensemble size of 50 was chosen
arbitrarily. Simple averaging was then used to combine the obtained outputs [45].

Table 3. Classification of the recorded parameters.

Load Parameters
Coping Parameters

External Load Internal Load

Distance

Session-RPE
Training strain

Training monotony
Acute:Chronic Workload Ratio

Recovery
Sleep quality

Sleep quantity
Soreness
Pleasure

Stress
Total Mood Disturbance

Abbreviation: RPE = Rating of Perceived Exertion.

2.5.5. Goodness of Fit of the Model

Goodness of fit of the model was defined as the ratio of time-instances classified in the correct
area regarding %PBT to time-instances classified in the wrong area according to %PBT.

2.5.6. Geometric Activity Performance Index

The Geometric Activity Performance Index (GAPI) was introduced in an attempt to convert the
geometrical output of the model into one single number and thus propose a potential numerical
surrogate to track during a swimming season. GAPI is defined as the ratio of the adaptation to
the maladaptation area. GAPI is directly proportional to the adaptation area (the larger this area,
the higher the GAPI). To identify the GAPI which best correlates with the performance outcome,
correlation (Spearman rank) and independence tests (Blomqvist β, also known as medial correlation
coefficient) were run between GAPI of the five chosen combinations and both best %PBT and quartiles of
best %PBT. Those tests were chosen because they are both non-parametric and appropriate for monotonic
function. p-values ≤ 0.05 were considered statistically significant. Statistic- and p-values were rounded
to two scientifically relevant decimals in accordance with the integration error. The Bonferroni-Holm
method was used to control for the multiple comparisons problem [46].

2.5.7. Prerequisites for the Modelling

Swimmers had to satisfy the following prerequisites in order to be included in the modelling:
(1) >80% response rate in every questionnaire; (2) >75% of training sessions recorded; (3) at least
one %PBT >100 % and one %PBT <100%; and (4) complete data set for all weeks having a %PBT
value. The first two prerequisites ensure that swimmers entering into the analysis had a high level of
compliance with the study protocol. The last prerequisite ensures that weeks without performance
outcome were included in the analysis. Three coordinates (x; y; z) are required for each time-instance
in order to compute such a graph. This reduced the number of time-instances to between four and
eight per swimmer, which consequently also corresponds to the number of performances analysed
per swimmer.
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3. Results

3.1. Swimmers’ Characteristics

From the initial cohort of 38 swimmers, three dropped out due to time restrictions or changing
swimming clubs, and one retired from swimming as illustrated in Figure 2. Thirteen swimmers met
the prerequisites to the modelling (Table 4). The seven swimmers whose %PBT values were exclusively
over 100%, had an average age of 15.3 ± 2.1 years, and their mean best FINA points value at the
beginning of the study was 462 ± 78. The six swimmers whose %PBT values were exclusively under
100%, had an average age of 20.2 ± 2.6 years, and their mean best FINA points value was 694 ±
88. A Welch’s t-Test was run to compare both groups and revealed a significant difference namely
swimmers with PBT values >100% were younger (p-value = 0.005) and had a lower swimming level
(p-value < 0.001). This may be due to the fact younger, less-experienced swimmers have more room
for improvement compared to older swimmers.
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Table 4. Individual swimmer’s characteristics.

Swimmer Sex Age
(Year) Quartile Best Discipline

(meter)
FINA Points

2013 Quartile Best
%PBT Quartile

Weekly Mean Internal
Training Load

(AU)
Quartile Weekly Mean

Distance (meter) Quartile

A2 ♂ 18 3 400 freestyle ld 765 4 100.1 1 4258.46 4 30,100 4

B5 ♀ 14 1 200 breaststroke ld 633 3 110 4 3144.23 3 18,826.92 2

B6 ♀ 15 1 100 freestyle sd 459 1 100.7 1 2775 2 17,148 2

B29 ♀ 15 1 50 breaststroke ld 504 1 105.9 3 2377.31 1 15,426.92 1

C10 ♂ 19 4 100 medley sd 582 2 103.1 2 2504.81 1 13,905.77 1

C13 ♂ 16 2 100 freestyle ld 471 1 103.7 3 3353.08 3 23,386.54 3

C14 ♂ 16 2 400 medley ld 445 1 109.2 4 2365.38 1 16,350 1

D21 ♀ 15 1 400 freestyle ld 640 3 106.1 4 4417.71 4 27,253.33 4

D22 ♀ 15 1 200 breaststroke ld 617 2 102.4 1 2946.4 2 32,212.8 4

D35 ♀ 18 3 100 freestyle ld 631 3 100.7 1 2850.38 2 25,732.69 3

E24 ♂ 19 4 100 freestyle ld 646 4 104.9 3 2112.5 1 15,411.46 1

E27 ♀ 18 3 100 backstroke ld 619 2 102.7 2 4703.27 4 23,744.23 3

E28 ♂ 20 4 50 butterfly ld 673 4 103.0 2 3128.46 3 22,900 2

Abbreviations: ♂= male, ♀= female, ld = long distance, sd = short distance, AU = Arbitrary Unit, Best %PBT = best performance during the study expressed in percentage of personal best
time; quartiles always refer to the parameter of the previous column and serve to compare a given swimmer with the other swimmers.
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3.2. Modelling Training Adaptation using ANN Geometric Optimisation

Figure 3 presents two graphs, obtained using ANN geometric optimisation.
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Figure 3. Modelling training adaptation using ANN geometric optimization. (A) Combination one
“distance; sRPE; %PBT used as the binary separation parameter” based on ANN geometric optimisation
for swimmer B29. (B) Combination one “distance; sRPE; %PBT used as the binary separation parameter”
based on ANN geometric optimisation for swimmer D21. The yellow area represents the improvement
area (i.e. %PBT > 100%) while the blue area represents the non-improvement area (i.e. %PBT < 100%).
The white boundary represents the separation between them. Green dots represent weeks for which
the %PBT is over 100%, while red dots represent weeks under 100%. Numbers in the dots represent
week number. Misclassified dots are per definition red dots in the yellow area or green dots in the
blue area (not illustrated here). They are due to the conditions we put on the optimisation to limit
the number of separated regions. Abbreviations: %PBT = percentage of Personal Best Time, sRPE =

session-RPE. As data was normalised dividing each value of the time series by its maximal value,
there is no unit for x- and y-axis.

3.2.1. Goodness of Fit of the Model

As indicated in Table 5, goodness of fit of the model was on average 95%.

3.2.2. Geometric Activity Performance Index

After correcting the p-values with the Bonferroni-Holm method, GAPI of the first (distance and
session-RPE), and to a lesser extent, fourth (training monotony and recovery) combinations were
positively and significantly correlated with quartiles of best %PBT and best %PBT for both Spearman
rank and Blomqvist β as shown in Table 6. GAPI of the combinations two (session-RPE and recovery),
three (training strain and recovery) and five (distance and training stress-balance) did not show
significant correlation with performance measures.
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Table 5. Goodness of fit of the model (in %).

Combinations
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1 2 3 4 5
SwimmersH

A2 75 100 100 100 100

B5 88 75 88 88 88

B6 100 100 83 100 100

B29 100 80 80 100 100

C10 100 100 100 100 100

C13 100 100 100 100 100

C14 100 100 100 100 75

D21 100 100 100 100 86

D22 100 100 100 86 100

D35 100 100 100 100 100

E24 100 100 100 100 100

E27 100 100 100 100 100

E28 75 63 88 88 75

Average 95 94 95 97 94

Global average 95
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Table 6. Correlation tests between GAPI and the improvement quartile/best %PBT.

Correlation
Tests

Quartile Best %PBT

Statistic Original
p-Value

Corrected
p-Value Statistic Original

p-Value
Corrected
p-Value

GAPI_1

Spearman
rank 0.85 <0.01 <0.01 0.85 <0.01 <0.01

Blomqvist β 0.93 <0.01 <0.01 0.92 <0.01 <0.01

GAPI_2

Spearman
rank 0.35 0.25 0.51 0.33 0.28 0.28

Blomqvist β 0.46 0.25 0.75 0.42 0.08 0.32

GAPI_3

Spearman
rank 0.56 0.05 0.13 0.59 0.03 0.13

Blomqvist β 0.46 0.25 0.25 0.42 0.08 0.16

GAPI_4

Spearman
rank 0.62 0.02 0.02 0.65 0.01 0.04

Blomqvist β 0.74 0.02 0.03 0.67 <0.01 <0.01

GAPI_5

Spearman
rank 0.39 0.20 0.40 0.47 0.10 0.31

Blomqvist β 0.46 0.25 0.25 0.42 0.08 0.32

Abbreviations: GAPI_n = GAPI of the nth correlation. %PBT = percentage of Personal Best Time.

4. Discussion

To the best of the authors’ knowledge, this is the first time a study has sought to model training
adaptation using ANN geometric optimisation.
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The suggested model permitted the systematic tracking of athletes during the course of the season
and allowed for a determination of whether a swimmer is located in the adaptation or maladaptation
area, based on the learning process of ANN geometric optimisation. Moreover, it could provide clues
to athletes and coaches regarding which variables need to be modified to reach the adaptation area.
For example, in Figure 3A, week nine is situated in the maladaptation area; in order to move to the
adaptation area, it can be concluded, based on this graphic representation, that training load should be
reduced. Furthermore, for both swimmers in Figure 3A,B, the yellow and blue areas correspond to the
areas for which session-RPE is less than distance, and session-RPE is greater than distance, respectively.
This corresponds to hypotheses previously described in the literature, namely that internal training
load < external training load indicates adaptation while internal training load > external training load
indicates maladaptation (to training) [1].

GAPI of the first (distance and session-RPE), and to a lesser extent, fourth (training monotony
and recovery) combinations were positively correlated with performance measures. Since GAPI is a
single number, it could be an interesting surrogate to track during a swimming season. As long as
swimmers have %PBT values both above and under 100%, this model could be used. If this is not the
case, each %PBT value could be compared to the mean of %PBT values rather than to 100%. A model
using 100% highlights absolute improvement, while a model using the mean of %PBT values highlights
relative improvement. This model makes intra-individual and not inter-individual comparisons. Lastly,
the principle of this model should be transferable to other sports but the collected data might need to
be different according to the sport-specific context.

4.1. Strengths and Limitations

Several challenges were encountered in initiating this study. First, it was difficult to find coaches
and swimmers interested in taking part in the study. Secondly, even when the web platform facilitated
data collection, the main investigator had to track data entered on a daily basis and remind swimmers
to enter data to increase compliance. Thirdly, the collaboration between the mathematician and sports
and exercise physician provided further challenges due to the lack of overlay in their specialities.

In the field of machine learning, a model is considered as valid if it can generalise from training
data set to unseen data [47]. Due to the small data set used in the present study, it was not possible
to split it into separate training and validation data sets. A second reason for the inability of the
authors to validate the model resides in the lack of funding for the study. It must be acknowledged
that ANN is an expensive and time-consuming process [48]. Therefore, it is currently unclear whether
the present model is valid or not. Consequently, validation of the present model is required before
practical application.

If ANN is believed to model training adaptation more accurately than traditional linear models,
and to be particularly appropriated for prediction, this technique has some limitations [8,14]. First,
ANN is considered as a “black box” due to its inability to identify causal relationships between input
and output [11,49]. Thus, the interpretation of the obtained results might be more complex. Secondly,
the more data ANN receives, the more it learns [50]. However, small data sets are often inevitable
in training monitoring [11]. Indeed, “training data accumulates with one data point per training,
per athlete”, while competition does not occur every week in sports like swimming [11] (p. 66).
Therefore, techniques such as jittering and ensemble modelling are needed to overcome issues related
to small data sets [11]. With a number of competition results ranging from four to eight, the precision
with which the adaptation and maladaptation areas were constructed might be improved with more
data. Retrospectively, having chosen ANN to model training adaptation in the present study might
not have been the best choice in the light of the small data set, absence of funding and subsequent
inability to validate the model.

The next limitation is that this model is currently based on only two variables at a time. Whilst it
is clear that more than two variables contribute to training adaptation, this work attempts to develop
an easy-to-use tool able to estimate training adaptation rather than to predict performance in the most
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accurate way. In theory, it would be possible to include more variables by computing n-dimensional
graphs. However, such graphs will be far less readable. Another way to include more variables could
be to use a score of different data rather than a single datum as coordinates.

Interestingly, another limitation of ANN turned into a strength in this case, namely that for ANN
there is no one-size-fits-all solution [51]. This nicely fits the need for individualisation of training and
recovery monitoring [1,3]. Another strength of using ANN relies on its ability to learn from existing
data to create future datasets. This is highly interesting in training science to inform coaches and
athletes early about training efficiency.

4.2. Future Studies

A validation attempt using unseen data is required before any practical application of the present
model. It would then be very interesting to know how long and how far athletes could go into
the maladaptation area without suppressing the super compensation mechanism or suffering from
NFOR/OT. It is an accepted principle of training that athletes temporarily leave the adaptation for the
maladaptation area; therefore, adaptation modelling could provide important input into the balance
between time spent in both areas [52].

5. Conclusions

Due to the fact that the present model has not been validated, results should be considered
as preliminary and interpreted with caution. Artificial Neural Networks geometric optimisation
seems to be a promising technique to model individual training adaptation during a season,
separating adaptation to maladaptation (to training), at any given week. Additionally, this model might
provide coaches and athletes with graphical clues on how to reach the adaptation area. The Geometrical
Activity Performance Index (GAPI) could be an interesting numerical surrogate to track during a
season. The GAPI based on external load (distance) and internal load (session-RPE) showed the
strongest correlation with performance measures.
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